联系方式
  • 公司: 深圳精成学社数学辅导班
  • 地址: 深圳福田区百花园紫荆阁
  • 联系: 方老师
  • 手机: 13427980436
  • 邮箱: 365808458@qq.com
  • 微信: 13427980436
  •  
  • 本站共被浏览过 8766 次

产品信息

更多...
价 格:面议

数学(汉语拼音:shù xué;希腊语:μαθηματικ;英语:Mathematics或Maths),源自于古希腊语的μθημα(máthēma),有学习、学问、科学之意。古希腊学者视其为哲学之起点,“学问的基础”。另外,还有个较狭隘且技术性的意义——“数学研究”。即使在其语源内,其形容词意义凡与学习有关的,亦被用来指数学。

其在英语的复数形式,及在法语中的复数形式+es成mathématiques,可溯至拉丁文的中性复数(Mathematica),由西塞罗译自希腊文复数τα μαθηματικά(ta mathēmatiká).

在中国古代,数学叫作算术,又称算学,最后才改为数学.中国古代的算术是六艺之一(六艺中称为“数”).

现时数学已包括多个分支.创立于二十世纪三十年代的法国的布尔巴基学派则认为:数学,至少纯数学,是研究抽象结构的理论.结构,就是以初始概念和公理出发的演绎系统.他们认为,数学有三种基本的母结构:代数结构(群,环,域,格……)、序结构(偏序,全序……)、拓扑结构(邻域,极限,连通性,维数……). [1]

数学被应用在很多不同的领域上,包括科学、工程、医学和经济学等.数学在这些领域的应用一般被称为应用数学,有时亦会激起新的数学发现,并促成全新数学学科的发展.数学家也研究纯数学,也就是数学本身,而不以任何实际应用为目标.虽然有许多工作以研究纯数学为开端,但之后也许会发现合适的应用

具体的,有用来探索由数学核心至其他领域上之间的连结的子领域:由逻辑、集合论(数学基础)、至不同科学的经验上的数学(应用数学)、以较近代的对于不确定性的研究(混沌、模糊数学).

就纵度而言,在数学各自领域上的探索亦越发深入.

图中数字为国家二级学科编号。

数理逻辑的主要分支包括:逻辑演算(包括命题演算和谓词演算)、模型论、证明论、递归论和公理化集合论。数理逻辑和计算机科学有许多重合之处,两者都属于模拟人类认知机理的科学。许多计算机科学的先驱者既是数学家、又是逻辑学家,如阿兰·图灵、邱奇等。

程序语言学、语义学的研究从模型论衍生而来,而程序验证则从模型论的模型检测衍生而来。

柯里——霍华德同构给出了“证明”和“程序”的等价性,这一结果与证明论有关,直觉逻辑和线性逻辑在此起了很大作用。λ演算和组合子逻辑这样的演算现在属于理想程序语言。

计算机科学在自动验证和自动寻找证明等技巧方面的成果对逻辑研究做出了贡献,比如说自动定理证明和逻辑编程。