联系方式
  • 公司: 深圳精成学社数学辅导班
  • 地址: 深圳福田区百花园紫荆阁
  • 联系: 方老师
  • 手机: 13427980436
  • 邮箱: 365808458@qq.com
  • 微信: 13427980436
  •  
  • 本站共被浏览过 8835 次

产品信息

更多...
价 格:面议

空间的研究源自于欧式几何.三角学则结合了空间及数,且包含有非常著名的勾股定理、三角函数等。现今对空间的研究更推广到了更高维的几何、非欧几何及拓扑学。数和空间在解析几何、微分几何和代数几何中都有着很重要的角色。在微分几何中有着纤维丛及流形上的计算等概念。在代数几何中有着如多项式方程的解集等几何对象的描述,结合了数和空间的概念;亦有着拓扑群的研究,结合了结构与空间。李群被用来研究空间、结构及变化。

数学基础

为了弄清楚数学基础,数学逻辑和集合论等领域被发展了出来。德国数学家康托尔(1845—1918)首创集合论,大胆地向“无穷大”进军,为的是给数学各分支提供一个坚实的基础,而它本身的内容也是相当丰富的,提出了实无穷的思想,为以后的数学发展作出了不可估量的贡献。

集合论在20世纪初已逐渐渗透到了各个数学分支,成为了分析理论、测度论、拓扑学及数理科学中必不可少的工具。20世纪初,数学家希尔伯特在德国传播了康托尔的思想,把集合论称为“数学家的乐园”和“数学思想最惊人的产物”.英国哲学家罗素把康托的工作誉为“这个时代所能夸耀的最巨大的工作”。

数理逻辑的主要分支包括:逻辑演算(包括命题演算和谓词演算)、模型论、证明论、递归论和公理化集合论。数理逻辑和计算机科学有许多重合之处,两者都属于模拟人类认知机理的科学。许多计算机科学的先驱者既是数学家、又是逻辑学家,如阿兰·图灵、邱奇等。

程序语言学、语义学的研究从模型论衍生而来,而程序验证则从模型论的模型检测衍生而来。

柯里——霍华德同构给出了“证明”和“程序”的等价性,这一结果与证明论有关,直觉逻辑和线性逻辑在此起了很大作用。λ演算和组合子逻辑这样的演算现在属于理想程序语言。

计算机科学在自动验证和自动寻找证明等技巧方面的成果对逻辑研究做出了贡献,比如说自动定理证明和逻辑编程。

当逻辑代数的逻辑状态多于2种时(如0、1、2或更多状态时),其通用模型的基本逻辑有2个。一个是从一种状态变为另一种状态的逻辑,是一个一元逻辑;另外一种是两种状态中按照某种规则(比如比较大小)有倾向性的选择出其中一种状态的逻辑,这是一个二元逻辑。

依据这两种逻辑,可以表达任意多状态的任意逻辑关系,即最小表达式。即任意多状态的逻辑是完备的。当逻辑状态数扩展有理数量级甚至更多。任意数学运算都可以用两个运算关系来联合表达:加减法和比较大小。