联系方式
  • 公司: 深圳精成学社数学辅导班
  • 地址: 深圳福田区百花园紫荆阁
  • 联系: 方老师
  • 手机: 13427980436
  • 邮箱: 365808458@qq.com
  • 微信: 13427980436
  •  
  • 本站共被浏览过 8780 次

产品信息

更多...
价 格:面议

具体的,有用来探索由数学核心至其他领域上之间的连结的子领域:由逻辑、集合论(数学基础)、至不同科学的经验上的数学(应用数学)、以较近代的对于不确定性的研究(混沌、模糊数学).

就纵度而言,在数学各自领域上的探索亦越发深入.

图中数字为国家二级学科编号。

正式主义定义用其符号和操作规则来确定数学。 Haskell Curry将数学简单地定义为“正式系统的科学”。[33]正式系统是一组符号,或令牌,还有一些规则告诉令牌如何组合成公式。在正式系统中,公理一词具有特殊意义,与“不言而喻的真理”的普通含义不同。在正式系统中,公理是包含在给定的正式系统中的令牌的组合,而不需要使用系统的规则导出。

空间的研究源自于欧式几何.三角学则结合了空间及数,且包含有非常著名的勾股定理、三角函数等。现今对空间的研究更推广到了更高维的几何、非欧几何及拓扑学。数和空间在解析几何、微分几何和代数几何中都有着很重要的角色。在微分几何中有着纤维丛及流形上的计算等概念。在代数几何中有着如多项式方程的解集等几何对象的描述,结合了数和空间的概念;亦有着拓扑群的研究,结合了结构与空间。李群被用来研究空间、结构及变化。

数理逻辑包括哪些内容呢?广义上,数理逻辑包括集合论、模型论、证明论、递归论。这里我们先介绍它的两个最基本的也是最重要的组成部分,就是“命题演算”和“谓词演算”。命题演算是研究关于命题如何通过一些逻辑连接词构成更复杂的命题以及逻辑推理的方法。命题是指具有具体意义的又能判断它是真还是假的句子。

如果我们把命题看作运算的对象,如同代数中的数字、字母或代数式,而把逻辑连接词看作运算符号,就象代数中的“加、减、乘、除”那样,那么由简单命题组成复合命题的过程,就可以当作逻辑运算的过程,也就是命题的演算。这样的逻辑运算也同代数运算一样具有一定的性质,满足一定的运算规律。例如满足交换律、结合律、分配律,同时也满足逻辑上的同一律、吸收律、双否定律、狄摩根定律、三段论定律等等。利用这些定律,我们可以进行逻辑推理,可以简化复和命题,可以推证两个复合命题是不是等价,也就是它们的真值表是不是完全相同等等。