联系方式
  • 公司: 深圳精成学社数学辅导班
  • 地址: 深圳福田区百花园紫荆阁
  • 联系: 方老师
  • 手机: 13427980436
  • 邮箱: 365808458@qq.com
  • 微信: 13427980436
  •  
  • 本站共被浏览过 8763 次

产品信息

更多...
价 格:面议

数学逻辑的早期定义是本杰明·皮尔士(Benjamin Peirce)的“得出必要结论的科学”(1870)。在Principia Mathematica,Bertrand Russell和Alfred North Whitehead提出了被称为逻辑主义的哲学程序,并试图证明所有的数学概念,陈述和原则都可以用符号逻辑来定义和证明。数学的逻辑学定义是罗素的“所有数学是符号逻辑”(1903)。

直觉主义定义,从数学家L.E.J. Brouwer,识别具有某些精神现象的数学。直觉主义定义的一个例子是“数学是一个接着一个进行构造的心理活动”。直观主义的特点是它拒绝根据其他定义认为有效的一些数学思想。特别是,虽然其他数学哲学允许可以被证明存在的对象,即使它们不能被构造,但直觉主义只允许可以实际构建的数学对象

数学基础

为了弄清楚数学基础,数学逻辑和集合论等领域被发展了出来。德国数学家康托尔(1845—1918)首创集合论,大胆地向“无穷大”进军,为的是给数学各分支提供一个坚实的基础,而它本身的内容也是相当丰富的,提出了实无穷的思想,为以后的数学发展作出了不可估量的贡献。

集合论在20世纪初已逐渐渗透到了各个数学分支,成为了分析理论、测度论、拓扑学及数理科学中必不可少的工具。20世纪初,数学家希尔伯特在德国传播了康托尔的思想,把集合论称为“数学家的乐园”和“数学思想最惊人的产物”.英国哲学家罗素把康托的工作誉为“这个时代所能夸耀的最巨大的工作”。

非欧几何的产生和集合论的悖论的发现,说明数学本身还存在许多问题,为了研究数学系统的无矛盾性问题,需要以数学理论体系的概念、命题、证明等作为研究对象,研究数学系统的逻辑结构和证明的规律,这样又产生了数理逻辑的另一个分支——证明论。

数理逻辑新近还发展了许多新的分支,如递归论、模型论等。递归论主要研究可计算性的理论,它和计算机的发展和应用有密切的关系。模型论主要是研究形式系统和数学模型之间的关系。数理逻辑近年来发展特别迅速,主要原因是这门学科对于数学其它分支如集合论、数论、代数、拓扑学等的发展有重大的影响,特别是对新近形成的计算机科学的发展起了推动作用。反过来,其他学科的发展也推动了数理逻辑的发展。

正因为它是一门新近兴起而又发展很快的学科,所以它本身也存在许多问题有待于深入研究。现在许多数学家正针对数理逻辑本身的问题进行研究。

总之,这门学科的重要性已经十分明显,它已经引起了很多人的关心和重视。

当逻辑代数的逻辑状态多于2种时(如0、1、2或更多状态时),其通用模型的基本逻辑有2个。一个是从一种状态变为另一种状态的逻辑,是一个一元逻辑;另外一种是两种状态中按照某种规则(比如比较大小)有倾向性的选择出其中一种状态的逻辑,这是一个二元逻辑。

依据这两种逻辑,可以表达任意多状态的任意逻辑关系,即最小表达式。即任意多状态的逻辑是完备的。当逻辑状态数扩展有理数量级甚至更多。任意数学运算都可以用两个运算关系来联合表达:加减法和比较大小。